A supercritical elliptic equation in the annulus

نویسندگان

چکیده

By a combination of variational and topological techniques in the presence invariant cones, we detect new type positive axially symmetric solutions Dirichlet problem for elliptic equation $$ -\Delta u + = a(x)|u|^{p-2}u an annulus $A \subset \mathbb{R}^N$ ($N\ge3$). Here $p>2$ is allowed to be supercritical $a(x)$ but possibly nonradial function with additional symmetry monotonicity properties, which are shared by solution $u$ construct. In case where $a$ equals constant, obtain exponent $p$ large or when $A$ fixed width.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recent Progress in Supercritical Elliptic Problems

We consider the elliptic problem ∆u+up = 0, u > 0 in an exterior domain, Ω = RN \D under zero Dirichlet and vanishing conditions, where D is smooth and bounded, and p is supercritical, namely p > N+2 N−2 . We prove that the associated Dirichlet problem has infinitely many positive solutions with slow decay O(|x| 2 p−1 ) at infinity. In addition, a fast decay solution exists if p is close enough...

متن کامل

Multiple Solutions for a Henon-like Equation on the Annulus

For the equation −∆u = ||x| − 2| α u p−1 , 1 < |x| < 3, we prove the existence of two solutions for α large, and of two additional solutions when p is close to the critical Sobolev exponent 2 * = 2N/(N − 2). A symmetry– breaking phenomenon appears, showing that the least–energy solutions cannot be radial functions.

متن کامل

On a superlinear elliptic equation

In this note we establish multiple solutions for a semilinear elliptic equation with superlinear nonlinearility without assuming any symmetry.

متن کامل

Bubble towers for supercritical semilinear elliptic equations

Abstract : We construct positive solutions of the semilinear elliptic problem ∆u + λu + up = 0 with Dirichet boundary conditions, in a bounded smooth domain Ω ⊂ RN (N ≥ 4), when the exponent p is supercritical and close enough to N+2 N−2 and the parameter λ ∈ R is small enough. As p → N+2 N−2 , the solutions have multiple blow up at finitely many points which are the critical points of a functi...

متن کامل

A Finite-dimensional Reduction Method for Slightly Supercritical Elliptic Problems

We describe a finite-dimensional reduction method to find solutions for a class of slightly supercritical elliptic problems. A suitable truncation argument allows us to work in the usual Sobolev space even in the presence of supercritical nonlinearities: we modify the supercritical term in such a way to have subcritical approximating problems; for these problems, the finite-dimensional reductio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales de l'Institut Henri Poincaré C, Analyse non linéaire

سال: 2022

ISSN: ['0294-1449', '1873-1430']

DOI: https://doi.org/10.4171/aihpc/38